MESOSCIENCE LAB
Multiscale Models of Complex Materials
Research
Our group works at the interface of theoretical chemistry, biology, physics, and applied mathematics.
Method Development
We develop new theoretical and computational methods to study multiscale phenomena in artificial and biological materials. Our team members collaborate to write software that is scalable and maintainable, using a broad range of open-source tools.
Science
We study mesoscale quantum dynamics in molecular materials. We explore multiscale structure-function relationships of bioenergetics in photosynthesis and respiration. We don't let traditional disciplinary boundaries stop us.
Group
We are diligent, collegial, and creative scientists who value working in a diverse team. Some of the words we use to describe our aspirations for the group:
-
Unbounded
-
Ambitious
-
Collaborative
Featured Article
In this article we develop an adaptive approach to solving the hierarchy of pure states (HOPS) equations which provides a formally exact, size-invariant scaling algorithm for simulating exciton dynamics in molecular aggregates containing thousands of pigments.
As part of this project, we also released our first open-source code base for adaptive HOPS (adHOPS) calculations. Check it out!
Chemical Science 12, p.9704 (2021)
Group Members
?
Future team members
Want to work on big questions and hard problems?
Are you excited about quantum mechanics?
Or are you curious about biological regulation?
Past members
Elliot Taffet
Post-doc
Post-doc Stanford University
PhD Princeton University
BA Columbia University
Moved on to a position at the University of Georgia
Funding
We gratefully acknowledge funding support from